حل عددی معادلات انتگرال فردهلم نوع دوم با هسته منفرد ضعیف به وسیله موجک های دوبعدی هرمیت مثلثاتی
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه
- نویسنده عبدالکریم باباآقایی
- استاد راهنما حمید مسگرانی حمید صفدری
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1388
چکیده
در این پایان نامه به حل عددی معادلات انتگرالفردهلم منفردنوع دوم می پردازیم که هسته ی آن ها از تابعی لگاریتمی همراه با تابعی هموار یا فقط از تابعی لگاریتمی تشکیل شده است. در اینجا روش های گسسته سازی گالرکین و کولوکیشن توضیح داده شده است. هسته ی این نوع از معادلات به روش گالرکین و توسط موجک های دو بعدی درونیاب مثلثاتی گسسته می شود. این گسسته سازی سبب به وجود آمدن یک ماتریس تنکٍ قطری ـ سیرکولنت می شود. به وسیله پایه های موجک های مثلثاتی فرمول های تحلیلی و بسیار دقیقی برای محاسبه ی درایه های این ماتریس به وجود آمده اند. آنالیز خطای موجکی در معادلات فردهلم نوع دوم (به صورت کلی) و آنالیز همگرایی معادلات انتگرال فردهلم نوع دوم با هسته ی منفرد ضعیف با موجک های مثلثاتی (به صورت اختصاصی) ارائه شده است. نشان می دهیم که تحت تجزیه ای که ارائه می شود، در این نوع از معادلات انتگرال فردهلم نوع دوم که هسته های لگاریتمی دارند، عملگر انتگرال، تنک است.
منابع مشابه
بهکارگیری موجک چبیشف نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم
در این مقاله، حل عددی معادلات انتگرال فردهلم فازی نوع دوم با بهکارگیری موجک چبیشف نوع دوم را مورد بررسی قرار میدهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگیهای اولیه موجک چبیشف نوع دوم، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دوم، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی مینماییم. سپس با بهکارگیری موجک چبیشف نوع دوم و به...
متن کاملحل معادلات انتگرال فردهلم نوع دوم با هسته منفرد ضعیف به وسیله موجک
روش های عددی حل معادلات انتگرال اغلب منجر به یک دستگاه از مرتبه n می شود که هزینه تشکیل این دستگاه دارای پیچیدگی محاسباتی (o(n^2 است. حل این دستگاه با روش های مستقیم مانند روش حذفی گاوس دارای پیچیدگی محاسباتی (o(n^3 است و در صورت استفاده از روش های تکراری تا (o(n^2 نیز قابل کاهش است. اما در این میان روش هایی موسوم به روش های سریع که روش های موجک نیز از جمله اند، می توانند این پیچیدگی را تا حد ق...
تقریب موجک هرمیت مثلثاتی برای معادلات انتگرال از نوع دوم با هسته منفرد ضعیف
در این پایان نامه سعی بر ان است که با معرفی نوع خاصی از موجک ها موسوم به موجک های مثلثاتی از نوع هرمیت معادلات انتگرال با هسته منفرد ضعیف را حل کنیم. همان طور که می دانیم بکارگیری بکارگیری روش های عددی در حل معادلات انتگرال منجر به تولید دستگاهی غیر تنک می شود که ما تلاش خواهیم کرد با بکارگیری روش گالرکین موجک و با بکارگیری موجک های مثلثاتی از نوع هرمیت غیر تنک بودن را کاهش دهیم. نشان خواهیم دا...
15 صفحه اولبررسی حل سریع معادلات انتگرال فردهلم نوع دوم با هسته های منفرد ضعیف به وسیله موجک ها
چکیده ندارد.
15 صفحه اولاستفاده از موجک هرمیت مثلثاتی برای حل تقریبی معادلات انتگرال با هسته منفرد ضعیف
در این پایان نامه معادله ی انتگرال نوع دوم فردهلم با هسته ی منفرد ضعیف را حل می کنیم.بدین صورت که با استفاده از موجکهای هرمیت مثلثاتی بعنوان پایه تقریبی برای قسمت منفرد هسته ساخته و جایگزین می کنیم که استفاده از این نوع موجک برای گسسته سازی معادلات انتگرال به یک بلوک تکراری از ماتریس های قطری تقارنی ختم می شود که موجب می شود حجم محاسبات بسیار کم شده و هزینه محاسبه و ذخیره سازی تا حد زیادی کاهش ...
15 صفحه اولمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023